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Hospitals are complex systems with essential societal benefits and
huge mounting costs. Some costs are inevitable while others are in-
curred directly due to inefficient use of resources or indirectly due to
suffering patients. All these costs are exacerbated by the stochasticity
of hospital systems, which is often manifested by congestion and long
delays in patient care. A queueing-network view, of patient flow in
hospitals, is thus natural for studying and improving its performance.

The goal of our research is to explore patient flow data through the
lenses of a queueing scientist. More specifically, we use exploratory
data analysis (EDA) to study patient flow in a large Israeli hospital,
which reveals important features that are not readily explainable by
existing models.

Questions raised by our EDA include: Can a simple (parsimonious)
queueing model usefully capture the complex operational reality of
the Emergency Department (ED)? What time resolutions and opera-
tional regimes are relevant for modeling patient length of stay in the
Internal Wards (IWs)? Towards fair routing of patients from the ED
to the IWs, how is workload measured (via bed occupancy levels or
patient turnover rates)? EDA also underscores the importance of an
integrative view of hospital units by, for example, relating ED bottle-
necks to IW physician protocols. The significance of such questions
and our related findings raises the need for novel queueing models
and theory, which we present here as research opportunities.

Hospital data, and specifically patient flow data at the level of the
individual patient, is increasingly collected but is typically confiden-
tial and/or proprietary. We have been fortunate to partner with a
hospital that allowed us to open up their data for universal access,
which enables reproducibility of our findings through a user-friendly
platform. This will hopefully stimulate readers to carry out their own
EDA, to be followed by new models and theory, which would ulti-
mately lead to much needed improvements in hospital patient flow
and overall performance.

Keywords and phrases: Queueing Models, Queueing Networks, Healthcare, Patient
flow, EDA
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1. Introduction. Health care systems in general, and hospitals in par-
ticular, are major determinants of our quality of life. They also require a
significant fraction of our resources and, at the same time, they suffer from
(quoting a physician research partner) “a ridiculous number of inefficiencies;
thus everybody—patients, families, nurses, doctors and administrators are
frustrated.” In (too) many instances, this frustration is caused and exacer-
bated by delays—“waiting for something to happen”; in turn, these delays
and the corresponding queues signal inefficiencies. Hospitals hence present
a propitious ground for research in Queueing Theory and, more generally,
Applied Probability and Operations Research (OR). Such research would
ideally culminate in reduced congestion (crowding) and its accompanying
important benefits: clinical, financial, psychological and societal. And a pre-
requisite for this to happen and for the benefits to accrue, we strongly be-
lieve, is that the supporting research is data-based.

Unfortunately, however, operational hospital data is accessible to very
few researchers, and patient-level data is in fact publicly unavailable. The
reasons span data nonexistence or poor quality, through concerns for pa-
tient confidentiality, to proprietorial attitudes of the data owners. We are
thus humbly attempting, in this present work, to change this landscape of
data-based OR and, in doing so, introduce a new standard. Specifically,
we identify and propose research opportunities and challenges that arise
from exploratory analysis of ample hospital data. Just as significantly, we
also open up our data and make it universally accessible at the Technion
IE&M Laboratory for Service Enterprise Engineering (SEELab): the data
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can be either downloaded or analyzed online, through a user friendly plat-
form (SEEStat) for Exploratory Data Analysis (EDA). Our goal is thus to
provide an entry to and accelerate the learning of data-based OR of hospi-
tals; Interested researchers can reproduce our EDA, and use it as a trigger
and a starting point for further data mining and novel research of their own.

1.1. Patient Flow Focus. Of particular interest to both researchers and
practitioners is patient flow in hospitals: improving it can have a significant
impact on quality of care as well as on patient satisfaction; and restrict-
ing attention to it adds a necessary focus to our work. Indeed, the medical
community has acknowledged the importance of patient flow management
(e.g. Standard LD.3.10.10, which the Joint Commission on Accreditation of
Hospital Organizations (JCAHO, 2004) set for patient flow leadership). This
acknowledgment is natural given that operational measures of patient flow
are relatively easy to measure, and that they inherently serve as “surrogates”
for other quality of care measures. For example, the rate of readmission to
the hospital, within a relatively short time, often serves as a proxy of clin-
ical quality of care. Similarly, the rate of LWBS (Left without being seen)
is a common proxy for accessibility to care. In parallel, patient flow has
caught the attention of researchers in Operations Research, Applied Prob-
ability, Service Engineering and Operations Management, with Queueing
Theory serving as a common central thread that connects these disciplines.
This is not surprising: hospital systems, being congestion-prone, naturally
fit the framework of Queueing Theory, which captures the tradeoffs between
(operational) service quality vs. resource efficiency.

Our starting point is that a queueing network encapsulates the opera-
tional dimensions of patient flow in hospitals, with the medical units being
the nodes of the network, patients are the customers, while beds, medi-
cal staff and medical equipment are the servers. But what are the special
features of this queueing network in terms of its system primitives, key
performance measures and available controls? To address this question, we
study an extensive data set of patient flow through the lense of a queue-
ing scientist. Our study highlights interesting phenomena that arise in the
data, which leads to a discussion of their implications on system operations
and queueing modeling, and culminates in the proposal of related research
opportunities.

However, patient flow, as highlighted by our title (“On Patient Flow . . .”),
is still too broad a subject for a single study. We thus focus on the inter-ward
resolution, as presented in the flow chart (process map) of Figure 1; this is in
contrast to intra-ward or out-of-hospital patient flow. Furthermore, having
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PATIENT FLOW IN HOSPITALS 5

calculated a 90 × 90 transition matrix between hospital wards (see Figure
2 in EV), we shall focus on the sub-system we call the ED+IW network
(more on that momentarily). To be concrete, we analyze patient flow data
of the Emergency Department (ED) (§2), Internal Wards (IWs) (§3), and
the transfer of patients from the ED to IWs (§4). Section 5 discusses the
interplay between these three components, and thus provides an integrative
view of the system as a whole. We offer final commentary in §6, where we also
provide a broader discussion of some common themes that arise throughout
the paper. Finally, we provide data access instruction and documentation,
as well as EDA logistics in the Appendix. We encourage interested readers
to refer to EV, which is an extended version of the present paper: it provides
more elaborate discussions of various issues and it covers additional topics,
not included here due to space and focus considerations.

1.2. EDA, the scientific paradigm and queueing science. Our approach
of learning from data is in the spirit of Tukey’s Exploratory Data Analysis
(EDA) (Tukey, 1977). To quote from Brillinger (2002), John Wilder Tukey
“...recognized two types of data analysis: exploratory data analysis (EDA)
and confirmatory data analysis (CDA). In the former the data are sacred
while in the latter the model is sacred. In EDA the principal aim is to see
what the data is “saying”. It is used to look for unexpected patterns in
data. In CDA one is trying to disconfirm a previously identified indication,
hopefully doing this on fresh data. It is used to decide whether data confirm
hypotheses the study was designed to test”.

Within the framework of the EDA-CDA dichotomy, here we focus on
EDA. This prepares the ground for future CDA which, in the present con-
text, would be the application of data-based (queueing and statistical) mod-
els to confirm or refute prevalent hypotheses. Confirmation would contribute
insight that supports the management of the originating system(s) (patient
flow in hospitals, in this paper); refutation gives rise to new hypotheses,
further EDA then CDA, with ultimately new insightful models. This EDA-
CDA cycle is routine in natural sciences, where it is commonly referred to
as The Scientific Paradigm (The OCR Project (IBM-Rambam-Technion),
2011). Human complexity forced the paradigm onto Transportation Science
(Herman, 1992) and Behavioral Economics (Camerer, Loewenstein and Ra-
bin, 2003), and the present study aims at doing the same for the analysis
of patient flow in hospitals. A similar approach has already proved success-
ful in other operational settings, including semi-conductor manufacturing
(Chen et al., 1988), telecommunication (Leland et al., 1994), new product
development (Adler et al., 1995) and, most recently, call centers (see Man-
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Fig 1. Patient Flow (Process Map) at inter-ward resolution. For example, during the
period over which the flow was calculated (August 2004), 326 patients arrived to the ED
per day on average, and 18.3 transferred from the ED to Surgery. (To avoid clutter, arcs
with monthly flow below 4 patients were filtered out; Created by SEEGraph, at the Technion
SEELab.)
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PATIENT FLOW IN HOSPITALS 7

delbaum, Sakov and Zeltyn (2000) and Brown et al. (2005) for the empirical
findings, and Gans, Koole and Mandelbaum (2003) and Aksin, Armony and
Mehrotra (2007) for surveys on follow-up work).

1.3. Apologies to the Statistician. We conclude our EDA discussion with
two “apologies” to the Statistician. Firstly, the goals of the present study, its
target audience and space considerations render secondary the role of “rigor-
ous” statistical analysis (e.g. hypothesis testing, confidence intervals, model
selection). Indeed, we believe that its intentional omission is both necessary
and justified. Accordingly, we either mention a statistical rationalization
only in passing (e.g. for the fact that patients Length-of-Stay (LOS) distri-
bution is Log-Normal in resolution of days and it is a mixture of Normal
distributions in an hourly resolution), or we simply content ourselves with
a convincing visual evidence (the privilege of having a large data set).

Secondly, our data originates from a single Israeli hospital, operating dur-
ing 2004–2008. This raises doubts regarding the generality of the scientific
and practical relevance of the present findings, and rightly so. Neverthe-
less, other studies of Israeli hospitals (Marmor (2003); Tseytlin (2009) and
EV) indicate that these hospitals have many common features. This still
leaves the concern that Israeli hospitals during the considered period are
perhaps too “unique”—however, in many significant ways they are not: hos-
pitals are slow to change and, more concretely, a parallel recent study by Shi
et al. (2012) in a major Singapore hospital, together with other privately-
communicated empirical research by colleagues, reveal phenomena that are
common across hospitals (e.g. the LOS distributions in Figure 9). All in all,
our hope is that reading the manuscript will dispel all doubts concerning
its broad relevance and significance (practical, statistical and scientific in
general).

1.4. Rambam hospital. Our data originates at the Rambam Medical Cen-
ter, which is a large Israeli academic hospital. This hospital caters to a pop-
ulation of more than two million people, and it serves as a tertiary referral
center for twelve district hospitals. The hospital consists of about 1000 beds
and 45 medical units, with about 75,000 patients hospitalized annually. The
data includes detailed information on patient flow throughout the hospi-
tal, over a period of several years (2004–2008), and at the resolution level
of Figure 1. In particular, the data allows one to follow the paths of indi-
vidual patients throughout their stay at the hospital, including admission,
discharge, and transfers between hospital units.

Traditionally, hospital studies have focused on individual units, in isola-
tion from the rest of the hospital; but this approach ignores interactions
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8 ARMONY ET AL.

among units. On the flip side, looking at the hospital as a whole is complex
and may lead to a lack of focus. Instead, and although our data encom-
passes the entire hospital, we chose to focus on a sub-network that consists
of the main ED (adult Internal, Orthopedics, Surgery, and Trauma) and five
IWs, denoted by A through E; see Figure 2. This sub-network, referred to

Arrivals
Emergency
Department

Abandonment

Services

IW A

IW C

IW B

IW D

IW E

Discharged
patients

Discharged
patients

Internal
Wards

Other
Medical

Units

53%

     13.6%

"Justice
Table"

Blocked at IWs

3.5%

69.9%

5%

15.7%

23.6%

84.3%

75.4%

245 pat./day

161 pat./day

1%

16.5%

13 pat./day

Fig 2. The ED+IW sub-network

as ED+IW, is more amenable to analysis than studying the entire hospital.
At the same time, it is truly a system of networked units, which requires an
integrative approach for its study. Moreover, the ED+IW network is also not
too small: According to Figure 2 in EV, approximately 53% of the patients
entering the hospital remain within this sub-network, and 21% of those are
hospitalized in the IWs; indeed, the network is fairly isolated in the sense
that its interactions with the rest of the hospital are minimal. To wit, virtu-
ally all arrivals into the ED are from outside the hospital, and 93.5% of the
patient transfers into the IWs are either from outside the hospital or from
within the ED+IW network.

While focusing on the ED+IW network, we nevertheless reap the benefits
of having access to overall hospital data. One such benefit is the use of other
hospital units as reference points—this enhances understanding of specific
phenomena that arise from the ED+IW data.
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PATIENT FLOW IN HOSPITALS 9

1.4.1. The ED+IW network. The main ED has 40 beds and it treats
on average 245 patients daily. An internal patient, whom an ED physician
decides to hospitalize, is directed to one of the five Internal wards. The IWs
have about 170 beds that accommodate around 1000 patients per month.
Internal Wards are responsible for the treatment of a wide range of internal
conditions, thus providing inpatient medical care to thousands of patients
each year. Wards A–D share more or less the same medical capabilities—
each can treat similar (multiple) types of patients. Ward E, on the other
hand, attends to only the less severe (walking) cases; in particular, this
ward cannot admit ventilated patients.

1.4.2. Data Description. Rambam’s 2004–2008 patient-level flow data
consists of 4 compatible “tables”, that capture hospital operations as fol-
lows. The first table (Visits) contains records of ED patients, including their
ID, arrival and departure times, arrival mode (e.g. independently or by am-
bulance), cause of arrival, some demographic data, and more. The second
table (Justice Table) contains details of the patients that were transferred
from the ED to the IWs. This includes information on the time of assign-
ment from the ED to an IW, the identity of this IW, as well as assignment
cancelations and reassignment times when relevant. The third table (Hospi-
tal Transfers) consists of patient-level records of arrivals to and departures
from hospital wards. It also contains data on the ward responsible for each
patient as, sometimes, due to lack of capacity, patients are not treated in
the ward that is clinically most suitable for them; hence, there could be a
distinction between the physical location of a patient and the ward that
is clinically in charge of that patient. The last table (Treatment) contains
individual records of first treatment time in the IWs. Altogether, our data
consists of over one million records, which has enabled the presently reported
EDA and more.

1.5. Some hints to the literature. Patient flow in hospitals has been stud-
ied extensively. Readers are referred to the many papers in Hall (2006) and
the recent Shi et al. (2012)—both providing leads to further references. In
the present subsection, we merely touch on published work, along the three
dimensions that are most relevant for our study: a network view, queueing
models and data-based analysis. Many additional references to recent and
ongoing research, on particular issues that arise throughout the paper, will
be further cited as we go along. This subsection concludes with what can be
viewed as “proof of concept”: a description of some existing research that
the present work and our empirical foundation have already triggered and
supported.
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10 ARMONY ET AL.

Most research on patient flow has concentrated on the ED and how to
improve ED flows in within. There are a few exceptions that offer a broader
view. For example, Cooper et al. (2001) identifies a main source of ED con-
gestion to be controlled variability, downstream from the ED (e.g. operating-
room schedules that are customized to physician needs rather than being
operationally optimized). In the same spirit, de Bruin et al. (2007) observes
that “refused admissions at the First Cardiac Aid are primarily caused by
unavailability of beds downstream the care chain.” These blocked admissions
can be controlled via proper bed allocation along the care chain of Cardiac
in-patients; and to support such allocations, a queueing network model was
proposed, with parameters that were estimated from hospital data. Broad-
ening the view further, Hall et al. (2006) develops data-based descriptions of
hospital flows, starting at the highest unit-level (yearly view) down to spe-
cific sub-wards (e.g. imaging). The resulting flow charts are supplemented
with descriptions of various factors that cause delays in hospitals, and then
some means that hospitals employ to alleviate these delays. Finally, Shi et al.
(2012) develops data-based models that lead to managerial insights on the
ED-to-Ward transfer process.

There has been a growing body of research that treats operational prob-
lems in hospitals with Operations Research (OR) techniques. Brandeau,
Sainfort and Pierskalla (2004) is a handbook of OR methods and applica-
tions in health care; the part that is most relevant to this paper is its chapter
on Health Care Operations Management (OM). Next, Green (2008) surveys
the potential of OR in helping reduce hospital delays, with an emphasis
on queueing models. Two recent handbooks on System Scheduling and OM
in Healthcare are Hall (2012) and Denton (2013)—both include chapters
worth reading and additional leads on OR/OM and queueing perspectives
of patient flow. Of special interest is Chapter 8 in Hall (2012), where Hall de-
scribes the challenging reality of bed management in hospitals. Jennings and
de Véricourt (2008, 2011) and Green and Yankovic (2011) apply queueing
models to determine the number of nurses needed in a medical ward. Green
(2004) and de Bruin et al. (2009) rely on queueing models such as Erlang-
C and loss systems, to recommend bed allocation strategies for hospital
wards. Lastly, Green, Kolesar and Whitt (2007) and Yom-Tov and Mandel-
baum (2011) develop (time-varying) queueing networks to help determine
the number of physicians and nurses required in an ED.

There is also an increased awareness of the significant role that data can,
and often must, play in patient flow research. For example, Kc and Terwiesch
(2009) use econometric methods to investigate the influence of workload on
service time and readmission probability in Intensive Care Units (ICUs).
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PATIENT FLOW IN HOSPITALS 11

This inspired Chan, Yom-Tov and Escobar (2011) to model an ICU as a
state-dependent queueing network, in order to gain insight on how speedup
and readmission effects influence the ICU.

1.5.1. A proof of concept. The present research has already provided the
empirical foundations for several graduate theses, each culminating in one
or several research papers: Marmor (2010) studied ED architectures and
staffing (see Zeltyn et al. (2011) and Marmor et al. (2012)); Yom-Tov (2010)
focused on time-varying models with customer returns to the ED (Yom-
Tov and Mandelbaum, 2011) and the IWs; Tseytlin (2009) investigated the
transfer process from the ED to the IWs (Mandelbaum, Momcilovic and
Tseytlin, 2012); Maman (2009) explored over-dispersion characteristics of
the arrival process into the ED (Maman, Zeltyn and Mandelbaum, 2011);
and Huang (2013) develops scheduling controls that help ED physicians
choose between newly-arriving vs. in-process patients, while still adhering
to triage constraints (Huang, Carmeli and Mandelbaum, 2011). These are
all examples of the EDA-CDA process, alluded to in Subsection 1.2.

2. Emergency Department. Patient flow in the Emergency Depart-
ment (ED) is a complex process that involves a multitude of interrelated
steps (see Figure 8 of EV). This process has been widely investigated, both
academically (Hall, 2006) and in practice (IHI, 2011; McHugh et al., 2011).
We shall hence be content here with its empirical macro view, which al-
ready turns out to be highly informative. Specifically, we view the ED as a
black-box, and then highlight interesting phenomena that relate to its pa-
tient arrivals, departures, and occupancy counts. Our EDA underscores the
importance of including time- and state- dependent effects in a queueing
model of the ED. Yet, and albeit this dependence, it also reveals that a sim-
ple stationary model may well fit patient-count during periods when the ED
is most congested. For limited purposes, therefore, our EDA supports the
use of “black-box” stationary models for the ED, which has been prevalent
in the literature (e.g. Green et al. (2006) and de Bruin et al. (2009)).

2.1. Basic facts. Rambam’s main ED attends to 200–250 patients daily:
close to 60% are classified as Internal (general) patients and the rest are Sur-
gical/Orthopedic, excluding a few per day that suffer from multiple trauma.
The ED has three major areas: Trauma acute, Internal acute, and Surgi-
cal/Orthopedic acute; some of the patients in the latter two are “Walking”
patients that do not require a bed. While there are formally 40 beds in the
ED, this bed capacity is highly flexible and can be doubled and more. Hence
there is effectively no upper bound on how many patients can simultaneously
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reside within the ED—either in beds or sitting and waiting. The hospital
has other EDs, physically detached from the main one discussed here—these
are dedicated to other patient types such as Pediatrics or Ophthalmology.
Throughout the rest of our paper we focus on the main ED and simply refer
to it as the ED. Moreover, within the ED, we focus on Internal (general) pa-
tients, in beds or walking: they both constitute the majority of ED patients
and give rise to most operational challenges.

During weekdays, the average length of stay (ALOS) of patients in the
ED is 4.25 hours: this covers the duration from entry until the decision
to discharge or hospitalize; it does not include boarding time, which is the
duration between hospitalization decision to actual transfer. We estimate
boarding time to be 3.2 hours on average (See Section 4.2). In addition,
10% (5%) of weekday patients experience LOS that is over 8 (11) hours,
and about 3–5% leave on their own (LWBS = left without being seen by a
doctor, LAMA = left against medical advice, or Absconded = disappeared
throughout the process and are not LWBS or LAMA). Finally, out of the
2004–2005 ED patients, around 37% were eventually readmitted; and, over-
all, 3%, 11%, and 16% of the patients returned within 2, 14, and 30 days,
respectively.

2.2. Exploratory Data Analysis. In this section we highlight some of our
EDA findings that relate to patient arrivals and patient-count distribution.
We observe both time- and state-dependent behavior of these entities, some
of which are not readily explained by existing queueing models.

2.2.1. Time dependency. As observed also in Green, Kolesar and Whitt
(2007), the ED hourly arrival rate varies significantly during the day. In
Rambam’s ED, it varies by a factor of almost 10; See Figure 3. We also
observe a time-lag between the arrival rate and occupancy levels, which is
due to the former changing significantly during a patient LOS (Bertsimas
and Mourtzinou, 1997). This lag must be accounted for in staffing recom-
mendations (Feldman et al., 2008; Green, Kolesar and Whitt, 2007).

Analyzing the same data, Maman (2009) also found support for the daily
arrival process to fit a time-varying Poisson process, but with heterogeneity
levels across days such that the arrival rate itself must be random (slightly
over-dispersed). Kim and Whitt (2013) identified similar patterns in a large
Korean hospital. The time-varying arrivals contribute to an overall time
varying ED environment, which we focus on next.

2.2.2. Fitting a simple model to a complex reality. Figure 4 (left) shows
24 patient-count histograms for internal ED patients, each corresponding to

imsart-ssy ver. 2013/03/06 file: "Short_Patient flow main".tex date: December 29, 2013



PATIENT FLOW IN HOSPITALS 13

0 

5 

10 

15 

20 

25 

30 

35 

0 

3 

5 

8 

10 

13 

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 

Nu
m

be
r o

f P
at

ie
nt

s 

Ar
riv

al
 R

at
e 

   
   

   
  

Time (60 min. resolution) 

HomeHospital , Emergency Internal Medicine Unit 
January 2004 October 2007, All day 

Patient Arrivals at Emergency Department  
Number of Patients in Emergency Department (average)  

Fig 3. Average number of patients and arrival rate by hour of the day

a specific hour of the day, with reference (right) to mean patient count, also
by hour of the day. (Similar shapes arise from total ED patient count—see
Figure 10 in EV.)

The figure displays a clear time-of-day behavior: There are two distinct
bell-shaped distributions that correspond to low occupancy (15 patients)
during the AM (3–9AM), and high (30 patients) during the PM (12–11PM);
with two transitionary periods of low-to-high (9AM–12PM) and high-to-
low (11PM–3AM). We refer to these four periods as the four “occupancy
regimes”.

0 
20 
40 
60 
80 

100 
120 
140 
160 
180 
200 
220 
240 
260 
280 
300 
320 
340 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 

Fr
eq

ue
nc

ie
s 

Number of patients (resolution 1) 

HomeHospital Time by ED Internal state (sec.) 
January 2004-October 2007, All days 

[00:00 - 01:00)  
[01:00 - 02:00)  
[02:00 - 03:00)  
[03:00 - 04:00)  
[04:00 - 05:00)  
[05:00 - 06:00)  
[06:00 - 07:00)  
[07:00 - 08:00)  
[08:00 - 09:00)  
[09:00 - 10:00)  
[10:00 - 11:00)  
[11:00 - 12:00)  
[12:00 - 13:00)  
[13:00 - 14:00)  
[14:00 - 15:00)  
[15:00 - 16:00)  
[16:00 - 17:00)  
[17:00 - 18:00)  
[18:00 - 19:00)  
[19:00 - 20:00)  
[20:00 - 21:00)  
[21:00 - 22:00)  
[22:00 - 23:00)  
[23:00 - 24:00)  

10 

15 

20 

25 

30 

35 

0 2 4 6 8 10 12 14 16 18 20 22 

Av
er

ag
e 

nu
m

be
r o

f c
as

es
 

Time (60 min. resolution) 

HomeHospital Number of Patients in 
Emergency Department (average), 
Emergency Internal Medicine Unit 

January 2004-October 2007, All days 
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Interestingly, when asking SEEStat to fit a mixture of three normal dis-
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tributions to the ED occupancy distribution, the fit algorithm automatically
detects the low, high and transitionary phases (See Figure 5).
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Further EDA (in EV) suggests that, during peak times (PM), when con-
trolling for factors such as day-of-the-week, patient type and calendar year,
one obtains a good fit for the empirical distribution by a “steady-state” nor-
mal distribution with equal mean and variance. Hence, one might speculate
that the underlying system dynamics can be modeled by an M/M/∞ queue,
which has a Poisson steady-state (mean=variance). Alternatively, it may also
be described as an M/M/N+M model with equal service and abandonment
(LWBS, LAMA, or Absconded) rates. It follows that one cannot conclusively
select a model through its empirical steady-state distribution—which is a
trap that is easy to fall into and from which Whitt (2012) saved us.

One is thus led to the relevance-limits of “black-box” ED models: they
may support operational decisions that depend only on total patient count
but not on (and neither do these decisions alter) internal dynamics; or they
can model ED sojourn times within a larger hospital model. If in addition,
and following Whitt (2012), a birth-death steady-state model is found ap-
propriate for the “black-box”, then its reversibility accommodates also appli-
cations that do change total count: for example, ambulance diversion in the
face of total count that exceeds a certain threshold, which then truncates the
count to this threshold (and the steady-state distribution is truncated corre-
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spondingly; see Kelly (1979)). On the other hand, black-box models cannot
support ED staffing (e.g. Yom-Tov and Mandelbaum (2011) acknowledges
some internal network dynamics), or ambulance diversion that depends on
the number of boarding patients (awaiting hospitalization). We discuss this
further in Section 2.3.

2.2.3. State dependency. In addition to time-dependent effects, we dis-
cover that the Internal ED displays some intriguing state-dependent behav-
ior. Specifically, Figure 6 depicts service (or departure) rates as a function of
the Internal patient count L (in bed or walking): the left graph displays the
total service rate, and the right graph shows the rate per Internal patient.
These graphs cannot arise from commonly used (birth-death) queueing mod-
els such as M/M/N (total rate that is linearly increasing up to a certain
point and then constant) or M/M/∞ (constant per patient). In contrast,
the per-patient service rate has an interval (11 ≤ L ≤ 20) where it is in-
creasing in L, which is between two intervals of decrease. (The noise at the
extremes, L ≤ 3 and L ≥ 55, is due to small sample sizes.) (Note that Batt
and Terwiesch (2012) and Kc and Terwiesch (2009) also found evidence for
a load dependent service rate.)
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Fig 6. Service rate and service rate per patient as a function of L

What can cause this particular state-dependence of the service rate per
patient? We start with the “slowdown” (L ≥ 25) which, in a congested ED,
is to be expected under any of the following scenarios:

• Multiple resource types with limited capacity: As the number of occu-
pied beds increases, the overall load on medical staff and equipment
increases as well. Assuming a fixed processing capacity, the service rate
per bed must then slow down.
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• Psychological: Medical staff could become emotionally overwhelmed,
to a point that exacerbates slow down (Sullivan and Baghat, 1992).
• Choking: Service slowdown may also be attributed to so-called resource

“choking”: medical staff becomes increasingly occupied with caring for
to-be-transferred (boarding) ED patients (who create work while they
wait and, moreover, their condition could actually deteriorate), that
they might end up choking off the throughput of the to-be-released
patients (see Figure 13 in Section 4.3). The choking phenomenon is well
known in other environments such as transportation (Chen, Jia and
Varaiya, 2001) and telecommunications (Gerla and Kleinrock, 1980)
where it is also referred to as throughput degradation.
• Time dependency and patient heterogeneity: Finally, slowdown as well

as speedup may be attributed to the combination of time dependent
arrivals and heterogenous patient mix (Marmor et al., 2011). We now
expand on the speedup effect.

As opposed to the slowdown, the apparent speedup (10 ≤ L ≤ 25) turns
out to be an artifact of biased sampling due to patient-heterogeneity and
time-variability (as observed in Section 2.2.1). To see this, we further investi-
gate the departure rate per patient, as a function of the patient count at four
different time-of-day intervals (corresponding roughly to the four occupancy
regimes identified in Figure 4). For each of these, we observe, in Figure 7,
either a constant service rate or a slowdown thereof, but no speedup.
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Fig 7. Service rate per patient as a function of L by occupancy regime

Now the rate-per-patient in Figure 6 is a weighted average of the four
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graphs of Figure 7. But these weights are not constant as a function of the
patient count, as seen in Figure 8. Moreover, the service rate as a function
of patient count varies at different times of the day. So what appears to be
a speedup (increasing graph) is merely a weighted average of non-increasing
graphs with state-dependent weights.
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2.3. Research Opportunities. Our EDA leaves many open questions
for further exploration. For example: What is the source for the unique shape
of the time dependent arrival pattern, which is common in many service
systems (including hospitals across the globe and call centers)? What is the
dominant factor in explaining the slowdown in service rate per patient, and
what can be done to alleviate this slowdown? Considering time and state
dependency, how does one separate these two effects? Which one is more
dominant and under what circumstances?

The observations in this section raise some broader research directions
within a few (somewhat overlapping) model dimensions: granularity, perfor-
mance metrics, and applications.

• Model granularity: Our focus in this section has been on overall ED
(Internal) patient count. This aggregates ED dynamics into merely
arrivals and departures which, as described in Subsection 2.2.2, yields
a useful black-box model but of a limited scope. In contrast, one could
consider a micro-level that acknowledges explicitly all events within
the ED, for example events arising during patient routes, service times
and resources utilization—more on that momentarily.
The macro- and micro-models are two extreme cases of model gran-
ularity, with a range of levels in between (e.g. Yom-Tov and Man-
delbaum (2011), Huang, Carmeli and Mandelbaum (2011), and Mar-
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mor et al. (2012)). In addition, one may also use a combination of
the macro-micro models where various black boxes serve as analytical
nodes within an elaborate system.
The granularity level to be used depends on target application, avail-
ability of data and analytical techniques. Put differently, what kind of
operational decisions require which model granularity? And more con-
cretely, for our proposed “blackbox” model—what are the purposes
for which this simple model is sufficient and what are this model’s
limitations?
• Performance metrics: There are numerous ED performance metrics

that have not been discussed here or have merely been touched upon.
These pertain to time-till-first-consultation, length of stay (LOS), causes
of operational delays (scarce resources, synchronization gaps), aban-
donment types (LWBS, LAMA, absconded), readmissions, workloads
and offered load, bed utilization, boarding times, staff-to-bed ratios,
and customers who are blocked upon their ED arrival (e.g. ambulance
diversion) or departure (boarding). Of special importance are ED con-
gestion metrics (Hwang et al. (2011) lists over 70), which have given
rise to prevalent crowding indices (e.g. Bernstein et al. (2003); Hoot
et al. (2007)).
Metrics must be assigned units, be measured (often a challenge) or be
estimated. As an example for the latter, (im)patience of LWBS patients
(i.e. the time these patients are willing to wait before leaving) is ob-
served only if patients announce their departure. Otherwise patients
are either served, in which case their waiting time provides a lower
bound for their (im)patience, or they are discovered missing when
called for service, which provides an upper bound. Statistical infer-
ence of ED (im)patience therefore requires novel models and methods:
these would combine current-status (Sun, 2006) and survival-analysis
(Brown et al., 2005) setups—in the latter, abandonment times are
observed, while they are not in the former.
• Applications: Applications of queueing models for ED patient flow in-

clude the following categories: ED design, capacity sizing, staffing (e.g.,
Yom-Tov and Mandelbaum (2011)), and flow control (e.g., Allon, Deo
and Lin (2010); Dobson, Tezcan and Tilson (2013); Hagtvedt et al.
(2009); Huang, Carmeli and Mandelbaum (2011)).
An outcome of ED design is flow architecture (Marmor et al., 2012).
Related examples that would enjoy research are operational (fast-
track) vs. clinical priorities (see also Zeltyn et al. (2011)), physician-
led triage vs. the prevalent nurse-led (Burström et al., 2012; Oredsson
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et al., 2011), and the creation of a dedicated sub-ED (e.g. for patients
with chest-pain; Zalenski et al. (1998)).
An important broader challenge is the evaluation of ED (Emergency
Department) vs. ER (Emergency Room) designs: the former functions
as a bonafide hospital ward that provides treatment to most patients,
while the latter is mainly a router to hospital wards, which treats
scarcely few. A final challenge is to model information within the ED.
Indeed, ED processes are geared towards accumulation of information,
up to a level that suffices to support the final decision of discharge vs.
admit; and the tradeoff in these processes is the classical exploration
(e.g. administer new tests or additional treatment) vs. exploitation (i.e.
make a final decision based on the current information); see Gittins,
Glazebrook and Weber (2011) and Huang, Carmeli and Mandelbaum
(2011).

3. Internal Wards. Internal Wards (IWs), often referred to as Gen-
eral Internal Wards or Internal Medicine Wards, are the “clinical heart” of a
hospital. Yet, relative to EDs, Operating Rooms and Intensive Care Units,
IWs have received less attention in the Operations literature; this is hardly
justified. IWs and other medical wards offer a rich environment in need
of OR/OM research, which our EDA can only tap: it has revealed multiple
time-scales of LOS, intriguing phenomena of scale-diseconomies and coexist-
ing operational-regimes of resources (beds, physicians). These characteristics
are attributed to IW inflow design, capacity management and operational
policies (e.g. discharge procedures, physician rounds).

3.1. Basic facts. Rambam hospital has five Internal wards. Wards A–
D are identical from a clinical perspective; the patients treated in these
wards share the same array of clinical conditions. Ward E is different in
that it admits only patients of less severe conditions. Table 1 summarizes
the operational profiles of IWs. For example, bed capacity ranges from 24
to 45 beds and Average LOS (ALOS) from 3.9 to 6 days.

IWs B and E are by far the smallest (least number of beds) and the
“fastest” (shortest ALOS, highest throughput). The superior operational
performance of IW E is to be expected as it treats the clinically simplest
cases. In contrast, the “speed” of IW B is not as intuitive because this ward
is assigned the same patient mix as IWs A,C, and D.

A shorter ALOS could reflect a more efficient clinical treatment or, al-
ternatively, a less conservative discharge policy. Either must not arise from
clinically premature discharges of patients, which would hurt patients qual-
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Table 1
Internal wards operational profile

Ward A Ward B Ward C Ward D Ward E

Average LOS (days) 6.0 3.9 4.9 5.1 3.7
(STD) (7.9) (5.4) (10.1) (6.6) (3.3)

Mean occupancy level 97.7% 94.4% 86.7% 96.9% 103.2%

Mean # patients per month 206.3 193.5 209.7 216.5 178.7

Standard (maximal) 45 (52) 30 (35) 44 (46) 42 (44) 24
capacity (# beds)

Mean # patients per bed 4.58 6.45 4.77 5.16 7.44
per month

Readmission rate 10.6% 11.2% 11.8% 9.0% 6.4%
(within 1 month)

Data refer to period May 1, 2006–October 30, 2007 (excluding the months
1-3/2007, when Ward B was in charge of an additional 20-bed sub-ward).

ity of care. To get a grasp on that quality, we use its operational (accessi-
ble hence common) proxy, namely patient readmission rate (proportion of
patients who are re-hospitalized within a pre-specified period of time: one
month in our case). In Table 1 we observe that the readmission rate of IW
B is comparable to the other wards. Moreover, patient surveys by Elkin and
Rozenberg (2007) indicated that satisfaction levels do not differ significantly
across wards. We conclude that IW B appears to be operationally superior
yet clinically comparable to the other wards. This fact may be attributed to
the smaller size of IW B, which we return to later in Section 3.3.3.

3.2. EDA: LOS—a story of multiple time scales. In this section, we ex-
amine the distribution of the LOS in the IWs. While it is to be expected
that clinical conditions affect patients LOS, the influence of operational and
managerial protocols is less obvious. It turns out that some of this influence
can be uncovered by examining the LOS distribution at the appropriate time
scale.

Figure 9 shows the LOS distribution in IW A, in two time scales: days
and hours. At a daily resolution, the Log-Normal distribution turns out
to fit the data well. It does so also in other service systems though an
explanation for its prevalence is still lacking (Brown et al., 2005). When
considering an hourly resolution, however, a completely different distribution
shape is observed: there are peaks that are periodically 24 hours apart, which
corresponds to a mixture of daily distributions. (We found that a normal
mixture fits usefully well, as depicted by the 7 normal mixture-components
over the range of 0–150 hours in Figure 9.)
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Fig 9. LOS distribution of IW A in two time-scales: daily and hourly

These two graphs reveal the impact of two operational protocols: The
daily time scale represents physician decisions, made every morning, on
whether to discharge a patient on that same day or to extend hospitalization
by at least one more day. The second decision is the hour-of-day at which
the patient is actually discharged. This latter decision is made according to
the following discharge process: It starts with the physician who writes the
discharge letters (after finishing the morning rounds); then nurses take care
of paperwork, instructing patients (and their families) on how to continue
medical treatment after discharge, and then arranging for transportation (if
needed). The discharge procedure is performed over “batches” of patients
and, hence, takes a few hours. The result is a relatively low variance of
the discharge time, as most patients are released between 3pm and 4pm—
see Figure 10; which yields an explanation for the observed peaks that are
spaced 24 hours apart. The variation around these peaks is determined by
the arrival process: patients are hospitalized in IWs almost exclusively over
a 12-hour period (10am–10pm), with a peak in arrival rate between 3pm–
7pm (Figure 10). Following similar observations in a Singaporean hospital,
Shi et al. (2012) offer a 2-time-scale mathematical model that supports our
EDA.

Note that the arrival process to the IWs is mostly a departure process
from the ED, and hence the timing of its peak (3pm–7pm) is naturally
coupled with IW discharge peaks (3pm–4pm). In other words, and as further
discussed in Section 5, the discharge policy from IWs significantly influences
ED congestion. This led Shi et al. (2012) to propose flow-stabilization as
a means for reducing ED congestion, which is caused by a ward discharge
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Fig 10. Arrivals, departures, and average number of patients in Internal wards by hour of
day

policy that resembles ours.

3.2.1. Research Opportunities. We discuss here multiple time-scales,
server identification, workload characterization, protocol mining via LOS
distributions, flow control and why Log-Normal.

Multiple Time Scales: Operational time-resolutions, specifically days/hours
and hours/minutes for IWs, correspond to the time scale by which service
durations are naturally measured which, in turn, identifies a corresponding
notion of “a server”. For example, IW LOS resolution in days corresponds to
conceptualizing beds as servers. This is the setup in de Bruin et al. (2009)
and Bekker and de Bruin (2010) who assume (hyper-) exponential LOS.
(Log-Normal service durations are yet to be accommodated by queueing
models.) Another IW resolution is hours, which is appropriate with servers
being nurses, physicians or special IW equipment. Here service times are
measured in minutes or parts of an hour, and offered load (workload) is cal-
culated (from arrival and service data) in units of, say, hours of work that
arrives per hour of the day.

Offered Load, or Workload: The offered load is the skeleton around which
capacity (staffing in the case of personnel) is dimensioned (Green, Kolesar
and Whitt, 2007). Consider nurses as an example. Their offered load results
from both routine and special care, and it varies during the day for at least
two reasons (see Equation (1) in Mandelbaum, Momcilovic and Tseytlin
(2012)): (a) routine care depends linearly on patient count, which varies
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over a day (Figure 10), and (b) admission and discharge of patients require
additional work beyond routine, and it is more frequent during some hours
than others (Figure 10). Combining both of these time variations, it is clear
that staffing levels must (and actually do) vary during the day, hence the
importance of observing and understanding the system in hourly resolution.
As mentioned above, some efforts to develop queueing models for nurse
staffing in medical wards have been carried out by Jennings and de Véricourt
(2011), Green and Yankovic (2011) and Yom-Tov (2010). However, these
works neither explain or incorporate the LOS distribution observed in our
data, nor do they distinguish between routine, admission, and discharge
workload. Even such a distinction might not be rich enough: indeed, the
hospital environment calls for a broader view of workload, which we discuss
in Section 6.2.

LOS and Protocols: LOS or Delay distributions encapsulate important
operational characteristics, and can hence be used to suggest, measure or
track improvements. Consider, for example, the hourly effect of IW LOS
(Figure 9), which is due to IW discharge protocols. It calls for an effort in
the direction of smoothing IW discharge rates over the day (Shi et al., 2012).
Or differences in shape of LOS distribution between two Maternity wards
(§4.2.1 in EV), which result from differing patient mix, suggests the redesign
of routing protocols towards a more balanced workload (Plonski et al., 2013).
Queueing models are natural for analyzing the interplay between LOS distri-
butions and operational protocols, the latter being the drivers of operational
performance. This leads to open data-based questions in two directions: ei-
ther incorporating protocols (e.g. patient priorities, resource scheduling) in
queueing models and validating the theoretical LOS distribution against
data (performance); or, conversely, mining protocols from data. We now
give two examples, one for each of the two directions.

Flow Control: How will changes in the IW discharge process influence the
system? For example, would the balancing of discharges, more uniformly
over the day, benefit the entire hospital? How would such a change influence
delays of patients waiting to be transferred into the IW from the ED? This
connection between ED boarding and ward discharges was explored by Shi
et al. (2012). We return to it in Section 5.

Why Log-Normal? A long-standing challenge is to explain the prevalence
of Log-Normal as a distribution of service durations (e.g. IW LOS in days
here, or durations of telephone calls in Brown et al. (2005)). Is Log-normality
due to service protocols? It is perhaps an inherent attribute of customer ser-
vice requirements? Note that Log-Normal has an intrinsic structure that is
both multiplicative—its logarithm is a central limit, and additive—it is in-
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finitely divisible, being an integral against a Gamma process (Thorin, 1977).
Can these properties help one explain the empirical Log-Normal service time
distribution?

3.3. EDA: Operational regimes and economies of scale. An asymptotic
theory of many-server queues has been developed in recent years (Gans,
Koole and Mandelbaum (2003) can serve as a starting point), which has
highlighted three main operational regimes: Efficiency Driven (ED), Quality
Driven (QD) and Quality & Efficiency Driven (QED). The ED-regime pri-
oritizes resource efficiency: servers are highly utilized (close to 100%), which
results in long waits for service. In fact, waiting durations in the ED regime
are at least in the order of service times. In the QD regime, the emphasis
is on the operational quality of service: customers hardly wait for service,
which requires that servers be amply staffed and thus available to serve.
Finally, the QED regime carefully balances service quality and server effi-
ciency, thus aiming at high levels of both and achieving it in systems that
are large enough. For example, in well-run call centers, server utilization
could exceed 90% while, at the same time, about half of the customers are
served without delay, and those delayed wait one order of magnitude less
than their service duration (seconds vs. minutes). The QED regime also ex-
hibits economies of scale in the sense that, as the system grows, operational
performance improves (e.g. less wait and less abandonment, under equal
workload per server).

Many-server queueing theory is based on asymptotic analysis, as the num-
ber of servers grows indefinitely. Nevertheless, QED theory has been found
valuable also for small systems (few servers) that are not exceedingly over-
loaded. This robustness to system size is due to fast rates of convergence
(Janssen, van Leeuwaarden and Zwart, 2011) and, significantly, it renders
QED theory relevant to healthcare systems (Jennings and de Véricourt,
2011; Yom-Tov and Mandelbaum, 2011). One should mention that, prior to
the era of many-server theory, asymptotic queueing theory was mostly con-
cerned with relatively small systems—that is few servers that are too over-
loaded for QED to be applicable (e.g. hours waiting time for service times of
minutes). This regime is nowadays referred to as conventional heavy-traffic
(Chen and Yao, 2001) and, at our level of discussion, it is convenient to
incorporate it into the ED-regime.

In the following subsection, we seek to identify the operational regime
that best fits the IWs. We then investigate (§3.3.3) the existence of the
economies-of-scale phenomenon in the hospital environment. We shall ar-
gue that, although IW beds plausibly operate in the QED regime, there is
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nevertheless evidence for diseconomies of scale.

3.3.1. In what regime do IWs operate? Can QED- and ED-regimes co-
exist?. We start by identifying the operational regimes that are relevant to
our system of IWs. This system has multiple types of servers (beds, nurses,
physicians, medical equipment), and each must be considered separately.
Here we focus on beds and physicians.

We argue that IW beds operate (as servers) in the QED regime. To sup-
port this statement, we first note that our system of IWs has many (10’s)
beds/servers. Next we consider three of its performance measures: (a) bed
occupancy levels; (b) fraction of patients that are hospitalized in non-IWs
while still being under the medical care of IW physicians (patients who were
blocked from being treated in IWs due to bed scarcity); (c) ratio between
waiting time for a bed (server) and LOS (service time).

Considering data from the year 2008, we find that 3.54% of the ED pa-
tients were blocked, the occupancy level of IW beds was 93.1%, and patients
waited hours (boarding) for service that lasted days (hospitalization). Such
operational performance is QED—single digit blocking probability, 90+%
utilization and waiting duration that is one order of magnitude less than ser-
vice. Preliminary formal analysis, carried out in Section 4.3.1 of EV, demon-
strates that QED performance of a loss model (Erlang-B, as in de Bruin et al.
(2009)) usefully fits these operational performance measures of the IWs.

Turning to physicians as servers, we argue that they operate in the ED
regime (conventional heavy traffic). This is based on the following observa-
tion: from 4pm to 8am on the following morning, there is a single physician
on duty in each IW, and this physician admits the majority of new patients
of the day. Therefore, patients that are admitted to an IW (only if there is
an available bed) must wait until both a nurse and the physician on call be-
come available. The admission process by the physician lasts approximately
30 minutes, and waiting time for physicians is plausibly hours (it takes an
average of 3.2 hours to transfer a patient from the ED to the IWs; see Section
4.2). Performance of physicians is therefore Efficiency Driven.

3.3.2. Research Opportunities. We identified two operational regimes,
QED and ED, that coexist within the ED+IW: waiting in the ED for IW ser-
vice. What queueing models and operational regimes can valuably capture
this reality? Note that such models must accommodate three time scales:
minutes for physician treatment, hours for transfer delays, and days for hos-
pitalization LOS. Some questions that naturally arise are the following: How
do the regimes influence each other? Can we assume that the “bottleneck”
of the system is the ED resource (physicians)? Thus, can one conclude that
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adding physicians is necessary for reducing transfer delays, while adding beds
would have only a marginal impact on these delays? (Note that bed capac-
ity plays the dual role of static capacity—capping the number of patients
that can be simultaneously hospitalized, and dynamic capacity—serving as
a proxy for the processing capacity of medical personnel.) How would a
change of physician priority influence the system, say giving higher priority
to incoming patients (from the ED) over the already hospitalized (in the
IWs)? Does the fact that physicians operate in the ED-regime eliminate the
economies of scale that one expects to find in QED systems? Empirical ob-
servations that will now be presented suggest that this might indeed be the
case.

3.3.3. Diseconomies of scale (or how ward size affects LOS). Our data
(Table 1) exhibits what appears to be a form of diseconomies of scale: a
smaller ward (IW B) has a relative workload that is comparable to the
larger wards, yet it enjoys a higher turnover rate per bed and a shorter
ALOS, with no apparent negative influence on the quality of medical care.
The phenomenon is reinforced by observing changes in LOS of IW B, when
the number of beds in that ward changes. Figure 11 presents changes in
ALOS and the average patient count, in IWs B and D over the years. During
2007, the ALOS of Ward B significantly increased. This was attributed to a
temporary capacity increase, over a period of two months, during which IW
B was made responsible for 20 additional beds. We observe that, although
the same operational methods were used, they seem to work better in a
smaller ward. In concert with the latter observation, we note a reduction in
ALOS of IW D, mainly from 2007 when ward size decreased as a result of
a renovation. One is thus led to conjecture that there are some drawbacks
in operating large medical units—e.g. larger wards are more challenging to
manage, at least under existing conditions.

Several factors could limit the blessings of scale economies:

• Staffing policy : It is customary, in this hospital, to assign an IW nurse
to a fixed number of beds; then nominate one experienced nurse to be a
floater for solving emerging problems and help as needed. This setting
gives little operational advantage to large units, if at all: the larger
the unit the less a single floater can help each nurse. The tradeoff that
is raised is between personal care (dedicated servers) vs. operational
efficiency (flexible). This tradeoff has been addressed in queueing mod-
els (Aksin, Karaesmen and Ormeci, 2007; Jouini, Dallery and Aksin,
2009), and in outpatient medical care (Balasubramanian, Muriel and
Wang, 2012; Balasubramanian et al., 2010), but inpatient healthcare
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Fig 11. Average LOS and number of patients in Internal wards B and D by year

will surely add novel idiosyncracies.
• Centralized medical responsibility : Ward physicians share the respon-

sibility over all patients. Every morning, the senior physicians, resi-
dents, interns, and medical students examine every patient case to-
gether (physicians’ rounds) and discuss courses of treatment. This is
essential as Rambam hospital is a teaching hospital, and one of its cen-
tral missions is the education and training of doctors. Naturally, the
larger the unit the longer its morning round and, consequently, less
capacity is available for other tasks (e.g. admissions and discharges)
—this could lead to a prolonged ALOS.

3.3.4. Research opportunities. In Section 4.3.2 of EV we provide ad-
ditional plausible explanations for the observed diseconomies of scale. This
phenomenon is important to model carefully and understand, as it can sig-
nificantly affect decisions on unit sizing and operational strategy. While
Queueing Theory is well equipped to address the operational dimensions of
such decisions, it will have to collaborate with other disciplines such as or-
ganizational behavior for complete comprehension. Now suppose one takes
size differences among wards as a given fact (e.g. due to space constraints
that cannot be relaxed). Then the following question arises: What protocol
should be used to route patients from the ED to the wards, in order to fairly
and efficiently distribute workload among them? This challenge is directly
related to the process of transferring patients from the ED to the IWs, which
is our next subject.

4. Transfer from the ED to IWs. The “ED-to-IW” process is the
channel of hospitalization for 21% of the Internal ED patients. We focus on
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a problem that commonly arises in this process—long patient waiting times
in the ED for a transfer to the IWs—and discuss its influence on patients
and staff. We view the process in the context of flow control, where patients
are routed from the Emergency Department to Internal Wards.

Routing in hospitals differs from other service systems for various reasons
including incentive schemes, customers’ (patients’) limited control (often
bordering on helplessness), and the timing of the routing decision. Thus,
although the transfer process involves routing-related issues similar to those
that have been looked at extensively in the queueing literature, our data
indicate that unusual system characteristics significantly affect delays and
fairness features in a hospital setting. Studying the transfer process in this
setting leads to many research opportunities.

4.1. Basic facts. We begin with a short description of the patient trans-
fer process from the ED to the IWs in Rambam hospital. A patient, whom
an ED physician decides to hospitalize in an IW, is assigned to one of the
five wards, according to a certain routing policy (described momentarily).
If that ward is full, its staff may ask for reassignment with the approval
of the Head nurse of the hospital. Once the assigned ward is set, the ward
staff prepares for this patient’s arrival. In order for the transfer to start, a
bed and medical staff must be available, and the bed and equipment must
be prepared for the patient (including potential rearrangement of current
IW patients). Up to that point, the patient waits in the ED and is under
its care and responsibility. If none of the IWs is able to admit the patient
within a reasonable time, the patient is “blocked”, namely transferred to a
non-internal ward. Then the latter undertakes nursing responsibility while
medical treatment is still obtained from an IW physician.

An integral component of the transfer process is a routing policy, or pa-
tients assignment algorithm. As described in Section 3.2, Wards A–D provide
similar medical services, while Ward E treats only the less severe “walking”
patients. The similarity between Wards A–D requires a systematic assign-
ment scheme of patients to these wards. Rambam hospital determines the
assignment via a round-robin (cyclical) order among each patient type (ven-
tilated, special care, and regular), while accounting for ward size (e.g. if Ward
X has twice as many beds as Ward Y, then Ward X gets two assignments
per one assignment of Y). This scheme is implemented by a computer soft-
ware called “The Justice Table”. As the name suggests, the algorithm was
designed by the hospital to ensure fair distribution of patient load among
wards, so that staff workload on will be balanced. A survey among 5 ad-
ditional hospitals in Israel (EV, Section 5.6) reveals that a cyclical routing
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policy is very common; yet, some hospitals apply alternative assignment
schemes. For example, one hospital uses random assignment by patient ID.
Surprisingly, only one of the surveyed hospitals uses an assignment that
takes into account real-time bed occupancy.

4.2. Delays in transfer. As is customary elsewhere, the operational goal
of our hospital is to admit ED patients to the IWs within four hours from
decision of hospitalization. However, the delays are often significantly longer.
The waiting-time histogram in Wards A–D for the years 2006-2008 is de-
picted in Figure 12. We observe significant delays: while the average delay
was 3.2 hours, 23% of the patients were delayed by more than 4 hours.
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Patient AVG % delay % delay
Type (STD) ≤ 4 h > 10 h

Regular 3.00 77% 2%
(2.53)

Special 3.33 74% 5%
Care (3.16)

Ventilated 8.39 41% 41%
(6.59)

All Types 3.22 75% 4%
(2.98)

Fig 12. Transfer time by patient type, in hours

* Data refer to period 5/1/06–10/30/08 (excluding the months 1–3/07 when
Ward B was in charge of an additional sub-ward)

An interesting phenomenon is observed when analyzing transfer delays
by patient types. We note that, on average, ventilated patients wait much
longer (8.4 hours) than regular and special care patients (average of 3 and
3.3 hours respectively)—see Figure 12. In particular, the delay distribution
of these ventilated patients is bi-modal with 41% of such patients delayed
by more than 10 hours. Ventilated patients must have the highest priority
in transfer but, in reality, many do not benefit from it.

How can it be that many of the ventilated patients experience such long
delays? We observe that the ventilated shorter delays (< 4 hours) have
a pattern that resembles that of the other two patient types. The longer
delays are harder to decipher. Possible explanations include: (a) Ventilated
patients are hospitalized in a sub-ward inside the IW (A–D), often referred
to as Transitional (intensive) Care Unit (TCU) (Zhu, Armony and Chan,
2013). Each such TCU has only 4–5 beds. The average occupancy rate of
the TCUs at Rambam hospital is 98.6%; the combination of high occupancy
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with a small number of beds results in much longer waits during overloaded
periods. (b) Ventilated patients require a highly qualified staff to transfer
them to their ward (especially since they are attached to an oxygen source).
Coordinating such transfers takes longer.

4.2.1. Research Opportunities. Delays in transfer provide additional
opportunities to those discussed at the end of §3.2.1. First there is the chal-
lenge of deciphering protocols—here ED-to-IW routing—from data such as
in Figure 12. Then one would like to be able to analyze and optimize patient-
flow protocols in queueing models, specifically here fork-join networks with
heterogeneous customers. Such models, under the FCFS discipline, were
approximated in Nguyen (1994). Their control was discussed in Atar, Man-
delbaum and Zviran (2012) and Leite and Fragoso (2013).

4.3. Influence of transfer delays on the ED. Patients awaiting transfer
(boarding patients) do overload the ED: beds remain occupied while new
patients continue to arrive, and the ED staff remains responsible for those
boarding patients. Therefore, the ED in fact takes care of two types of
patients: boarding patients (awaiting hospitalization) and in-process patients
(under evaluation or treatment in the ED). Both types may suffer from
transfer delays.

Boarding patients may experience significant discomfort while waiting:
the ED is noisy, it is not private and does not serve hot meals. In ad-
dition, ED patients do not enjoy the best professional medical treatment
for their particular situation, and do not have dedicated attention as in
the wards. Moreover, longer ED stays are associated with higher risk for
hospital-acquired infections (nosocomial infections). Such delays may in-
crease both hospital LOS and mortality rates, similarly to risks of delays
in ICU transfer (e.g. Chalfin et al. (2007); Long and Mathews (2012); Maa
(2011)). Hence, the longer patients wait in the ED, the higher the likelihood
for clinical deterioration and the lower is their satisfaction.

In-process ED patients may suffer from delays in treatment, as additional
workload imposed by transfer patients can be significant. Figure 13 shows
our estimates of the fraction of time that ED physicians spent caring for the
transfer patients, assuming (the Rambam experience) that every such pa-
tient requires 1.5 minutes of physician’s time every 15 minutes. We observe
that transfer patients take up to 11% of physician time in the ED. This
extra workload for the ED staff, that occurs at times when their workload
is already high, results in “wasted” capacity and throughput degradation:
a phenomenon that is well acknowledged in transportation (Chen, Jia and
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Varaiya, 2001) and telecommunication (Gerla and Kleinrock, 1980) and dis-
cussed earlier in Section 2.2.3.
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Fig 13. Number of patients in ED-to-IW transfer (A–E) and the fraction of time that ED
physicians devote to these patients

To summarize, by improving patient flow from the ED to the IWs, in
particular reducing transfer times, hospitals can improve the service and
treatment provided to both transfer and in-process patients. In turn, re-
ducing the workload on the ED will lead to a better response to arriving
patients and is likely to save lives.

4.3.1. Research Opportunities. The delays in transfer give rise to
interesting research questions. For example:

1. Modeling transfer queue: Transfer patients may be viewed as customers
waiting in queue to be served in the IW. Traditionally, it has been as-
sumed that the customers receive service only once they reach the ser-
vice station, and not while waiting in queue. In contrast, here a waiting
patient is “served” by both the ED and the IW. In the ED, clinical
treatment is provided: according to regulations, transfer patients must
be examined at least every 15 minutes. In the ward, “service” actually
starts prior to the physical arrival of the patient, when the ward staff,
once informed about a to-be-admitted patient, starts preparing for the
arrival of this specific patient. The above has implications on modeling
the ED-to-IW process, and it affects staffing, work scheduling, etc.

2. Emergency Department architecture: As described, ED staff takes care
of two types of patients: transfer and in-process patients. Each type
has its own service requirements, leading to differing service distribu-
tions and differing distribution of time between successive treatments.
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While transfer patients receive periodic service according to a nearly-
deterministic schedule (unless complications arise), in-process service
is more random.
One may consider two options for ED architecture: (a) treat transfer
and in-process patients together in the same physical location, as is
done at Rambam, or (b) move the transfer patients to a transitional
unit (sometimes called “delay room” or “observation room”), where
they wait for transfer; this is done, for example, in a Singapore hospi-
tal that we were in contact with. Note that using option (b) implies
having dedicated staff, equipment and space for this unit. The follow-
ing question naturally arises: Under what conditions in each of these
ED architectures more appropriate?
Note that the Singapore hospital architecture is even more complicated
than (b), as the responsibility for the transfer patients is handed over
to IW physicians after a two-hour delay. This provides the IW medical
staff with an incentive to transfer the patients to the ward, as soon as
possible, where they can be comfortably treated. In EV, Section 5.6,
we discuss how different architectures are related to incentive schemes
and, in turn, influence delay times.

4.4. Causes of delay. In order to understand the causes of long delays in
the ED-to-IW transfer, we interviewed hospital staff, conducted a time and
motion study, and further explored our data. We have learned that delays
are not only caused by bed unavailability; patients often wait even when
there are available beds. Indeed, our data show that the fraction of patients
who had an available bed in their designated ward, upon their assignment
time, was 43%, 48%, 76%, 55%, for Wards A–D, respectively. However, as
Figure 12 shows, the probability to be admitted to the wards, immediately
(or within a short time) after hospitalization decision, was much smaller. In
fact, over the same period of time, only 4.9% of the patients were admitted
to an IW within 30 minutes from their assignment to this ward. Our findings
identify 13 causes for delay, which are summarized in the Cause-and-Effect
(Fishbone) diagram depicted in Figure 14. We elaborate here on two that
have interesting modeling aspects.

1. Input-queued vs. Output-queued system: Recall that the preparation
for a particular transfer patient starts in the designated ward, prior to
the actual transfer. This forces the hospital to adopt an output-queued
scheme (Stolyar, 2005), where each patient is first assigned to an IW
and then waits until the ward is able to admit. This is in contrast to a
scheme in which patients are placed in a “common” queue, are routed
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Delays in ED-IW transfers
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Fig 14. ED-to-IW delays: Causes and effects chart

to an IW only once at the head of the queue and any of the beds in
the IWs become available. The latter is referred to as an input-queued
scheme. Figure 15 depicts the two schemes.

1 2 K 1 2 K

Fig 15. Output vs. Input-queued scheme

Output-queued schemes are inherently less efficient than their input-
queued counterparts, because the routing decision is made at an earlier
time with less information. Moreover, the output-queued scheme is
inequitable towards patients because FCFS is often violated.
The problem of customer routing in input-queued schemes has re-
ceived considerable attention in the queueing literature (e.g. Armony
(2005); Atar and Shwartz (2008); Gurvich and Whitt (2010); Man-
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delbaum and Stolyar (2004)). Similar issues in output-queued systems
have been generally overlooked. Exceptions include Stolyar (2005) and
Tezcan (2008) who establish that the two systems have asymptotically
similar performance, in both the conventional and the many-server
heavy traffic regimes. This implies that inefficiencies, which arise in
our ED-to-IW process due to the use of an output-queued scheme,
become negligible in highly loaded systems. More generally, insights
gained from studying the input-queued systems, as in the above ref-
erences, may carry over to the output-queued systems. But how well
does that insight translate to an environment such as a medical unit?
This should be tested empirically, as was done to a certain extent in
Tseytlin and Zviran (2008).

2. The role of information availability in routing and its influence on
transfer delays: An additional important aspect of routing schemes,
which directly affects patient delays, is the availability of information
in the system, at the moment of the routing decision. On the one hand,
hospitals may base the routing on no information, namely use a static
routing policy like round robin. On the other extreme, a full infor-
mation policy that takes into account current occupancy levels and
projected future dismissals and transfers is feasible, if the information
system is accurate and accommodating enough. It is interesting to in-
vestigate the effect of information availability on system performance
and fairness towards patients and medical staff.

4.5. Fairness in the ED-to-IW process. Transfer policies may have ram-
ifications on issues related to fairness towards customers (patients) and to-
wards servers (medical and nursing staff). We investigate both aspects in
the next several subsections.

4.5.1. Fairness towards patients. In Section 4.4 we pointed out that
output-queued schemes lead to diminished patient fairness, as FCFS order is
often violated. (For references on the significance of FCFS in customer jus-
tice perception see Mandelbaum, Momcilovic and Tseytlin (2012).) Indeed,
our Rambam data indicate that 45% of the ED-to-IW transfer patients were
“overtaken” by another patient (see Table 2). Moreover, more than a third
of those were overtaken by at least three other patients. Although this figure
includes overtaking between patient types, which may be due to clinical con-
siderations, within each patient type there were significant FCFS violations
as well. Specifically, 31% were overtaken by at least one patient of the same
type, most of them not within the same ward, and hence these violations
are likely due to the output-queued scheme.
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Table 2
Percentage of FCFS violations per type within each IW

IW \ Type Regular Special care Ventilated Total

Ward A 7.57% 7.33% 0.00% 7.37%

Ward B 3.86% 5.72% 0.00% 4.84%

Ward C 7.09% 6.62% 0.00% 6.80%

Ward D 8.18% 7.48% 2.70% 7.81%

Total within wards 6.91% 6.80% 0.67% 6.80%

Total in ED-to-IW 31% 31% 5%

While output-queues are inherently inefficient and unfair, they are un-
likely to change in Rambam hospital due to the practical/clinical consid-
erations described above, as well as psychological consideration (e.g., early
ward assignment reduces uncertainty which in turn reduces anxiety for pa-
tients and their families). The use of output-queues in the ED-to-IW process
illustrates some idiosyncrasies of flow control in healthcare.

4.5.2. Research Opportunities. A natural question is how to best
maintain patient fairness in the output-queued scheme: What routing poli-
cies will keep the order close to FCFS? Is FCFS asymptotically maintained
in heavy-traffic?

What other fairness criteria should be considered? Assuming that patients
have preferences (clinical or prior experiences) for a specific ward, fairness
may be defined with respect to the number of patients who are not assigned
to their top priority. Related to this is the work of Thompson et al. (2009)
that looks into minimizing the cost that reflects the number of “non-ideal”
ward assignments; we propose to also look at the equity between patients
in this context. One may alternatively consider achieving equity in terms of
blocking probability (recall the discussion in §3.3.1) or patients delay. For
the latter, Chan, Armony and Bambos (2011) show that such fairness is
achieved via Maximum Weighted Matching.

4.5.3. Fairness towards staff. In Section 4.4 we discussed the implica-
tions of the routing policy on delays in the ED-to-IW process; in addition,
routing also has a significant impact on wards’ workload. High workload
tends to cause personnel burnout, especially if work allocation is perceived
as unjust (references can be found in Armony and Ward (2010)). Rambam
hospital takes fairness into consideration, as is implied from the name “Jus-
tice Table”. However, is the patient allocation to the wards indeed fair?

There are many candidates for defining server “fairness”. One natural
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measure is equity in the occupancy level. Since the number of nurses and
doctors is typically proportional to the number of beds, equal occupancy
levels imply that each nurse/doctor treats the same number of patients,
on average. But does this imply that their workload is evenly distributed?
As already mentioned in §3.2.1, staff workload in hospitals is not spread
uniformly over a patient’s stay, as patients admissions/discharges tend to
be work intensive and treatment during the first days of hospitalization
require much more time and effort from the staff than in the following days
(Elkin and Rozenberg, 2007). Thus, one may consider an alternative fairness
criterion: balancing the incoming load, or the “flux”—number of admitted
patients per bed per time unit, among the wards. In Table 1 we observe
that Ward B has a high average occupancy rate. In addition, as it is both
the smallest and the “fastest” (shortest ALOS) ward, then (by Little’s law)
it has a higher flux. Since nursers and doctors are assigned to particular
wards, the load on Ward B staff is hence the highest. We conclude that the
most efficient ward is subject to the highest load—that is, patient allocation
appears unfair towards servers.

Our data have already motivated some work on fair routing. Analytical
results for input-queued systems were derived in Mandelbaum, Momcilovic
and Tseytlin (2012), where both occupancy level and flux are taken into
account with respect to fairness. The authors in Tseytlin and Zviran (2008)
perform a simulation study of the output-queued system under various rout-
ing schemes. They proposed an algorithm that balances a weighted function
of occupancy and flux to achieve both fairness and short delays.

4.5.4. Research Opportunities. In the context of output-queued sys-
tems, a more rigorous analytical study is needed to formalize the conclusions
of Tseytlin and Zviran (2008). Specifically, how to combine the occupancy
and flux criteria into a single effective workload measure, which would be
balanced across wards. Even in the context of input-queued systems, it is our
view that Armony and Ward (2010); Mandelbaum, Momcilovic and Tseytlin
(2012) and Ward and Armony (2013) have just taken the first steps towards
staff fairness, as they do not fully account for the dynamic nature of work-
load in healthcare. As patients progress in their hospital stay, their medical
needs change (mostly reduce) and the accuracy in which one can predict
their LOS increases. This information could be very useful in successfully
balancing workload.

The underlying definition of operational fairness, in our discussion thus
far, proposed equal workload across medical staff. A prerequisite for solving
the “fairness problem” is then to define and calculate workload appropri-
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ately. As argued in Section 6.2, such calculations must include not only direct
time per resource but also emotional and cognitive efforts, as well as other
relevant factors. For example, the mix of medical conditions and patient
severity might also be included in workload calculation. For the latter, it is
not straightforward to determine whether wards would be inclined to admit
the less severe patients (who add less workload, and potentially less emo-
tional stress), or the more severe patients who would challenge the medical
staff, and provide them with further learning and research opportunities;
the latter is especially relevant in teaching hospitals such as Rambam.

5. A system view. In Sections 2, 3, and 4 we treated the three network
components (ED, IWs, transfers) unilaterally. In contrast, we now under-
score the importance of looking at this network as a whole, as these three
components are clearly interdependent. For concreteness, we focus on how
the discharge policy in the IW affects ED-to-IW transfer times which, in
turn, affect ED workload. We thereby argue that an integrative system view
is needed here.

It is natural to expect that the higher the occupancy in the IWs the
longer the delays in transfer, due to limited IW resources. The left diagram
in Figure 16 displays the average delay in transfer alongside the average
number of patients per ward—in IWs A–D, by day of the week. We observe
that, as expected, the two measures have a similar weekly pattern. The
right diagram in Figure 16 shows delays in the transfer process and the
average number of patients in the IWs, as they vary throughout the day.
The correlation here is not as apparent as in the daily resolution; other
factors, such as the IW discharge process, play a role.

We observe that the longest delays are experienced by patients assigned
to the IWs in early morning (6am–8am)—these patients need to wait on
average 5 hours or more. This is due to the fact that IW physicians perform
their morning rounds at this time and cannot admit new patients. Then
we note a consistent decline in the transfer delay up until noon. Patients
assigned to the IWs during these times are admitted into the IWs between
1–3pm. This is about the time when the physicians’ morning rounds are
complete; staff and beds are starting to become available. Indeed, there is a
sharp decline in the number of IW patients around 3–4pm when most of the
IWs discharges are complete. Shi et al. (2012), in their study of a Singapore
hospital, discover similar discharge patterns, though the discharge procedure
there occurs somewhat earlier in the day.

Further data analysis reveals that patients that are transferred to the
IWs before 9am have significantly shorter LOS; early hospitalization reduces
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ALOS by 1 day. Thus, we argue that it is extremely important to shorten
the ED-to-IW transfer process and improve the admission process in the
IWs so that the first day of hospitalization is not “wasted”.

In Section 4.3, we discussed how transfer delays impact physician work-
load in the ED and hence may influence quality of care there. Thus, we
observe a chain of events in which the discharge policy in the IWs impacts
the delays in transfer, which in turn affects workload in the ED. In partic-
ular, a system-view perspective is called for.
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Fig 16. ED-to-IW transfer delays and number of patients in IW

5.1. Research opportunities. Our discussion suggests that daily rou-
tines (schedules) in the IWs have significant impact on transfer delays and
thereby on ED workload. The question arises as to how one might wish to
change these daily routines in view of this impact. The question fits well
within a queueing context. The present daily routine at Rambam may be
viewed as a priority scheme where current IW patients enjoy priority during
morning physicians’ rounds, and discharged patients obtain priority in the
afternoon, followed by newly-admitted patients. Is it possible to positively
affect system performance by altering these priorities? More broadly, the
challenge is to design priority schemes for a time-varying queueing network.

Our discussion here brings us back to the broader issue—that is the need
for a system view, in order to understand and relieve delays in patient flow.
Consider, for example, the patients that are boarding in EDs (Figure 16) or
in ICUs (Long and Mathews, 2012). Such boarding delays are often due to
scarce resources or synchronization gaps (Zaied, 2011), which are rooted in
parts of the system that differ from those where the delays are manifested.
For example, scarce resources in the IWs exacerbate ED delays, and tardy
processing of MRI results can prolong ICU LOS. It follows that a system
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view is required for the analysis of patient flow in hospitals.

6. Discussion and concluding remarks. We have described research
opportunities that arose from EDA of patient flow. We now highlight some
common themes that have surfaced throughout the process. Specifically, we
expand on the relationship between operational performance measures to
overall hospital performance, discuss the concepts of workload and capacity
and underline the importance of paying attention to time scales.

6.1. Operational measures as surrogates to overall hospital performance.
Hospital performance is measured across a variety of dimensions: clinical,
financial, operational, psychological (patient satisfaction) and societal. The
most important measures are clinical but, practically, operational perfor-
mance is the easiest to quantify, measure, track online and react upon. More-
over, operational performance is tightly coupled with the other dimensions,
which explains its choice as a “language” that captures overall performance.
For example, the fraction of patients who LWBS is a proxy for accessibility
to care, and readmissions pertain to clinical quality of care.

Operational performance measures are often associated with patient flow.
Among these, we discussed LWBS and “blocking” (Section 3.3.1), where
patients end up being hospitalized in a ward different from that which is
medically best for them (see Yom-Tov (2010) for more details); boarding
(transfer) time from the ED to the appropriate medical unit; and measures
related to LOS, in the ED or IWs, such as merely averages (or medians), or
fractions staying beyond a desired threshold. Other measures that have not
been mentioned require intra-ward data, which is beyond our granularity.
Examples include the time until triage or until a patient is first seen by
an ED physician (Zeltyn et al., 2011), the number of visits to a physician
during an ED sojourn (Huang, Carmeli and Mandelbaum, 2011) and the
time-ingredients of an ED visit (treatment and waiting—for a resource, for
synchronization or for a treatment to take effect; see Zaied (2011) and Atar,
Mandelbaum and Zviran (2012)).

An operational measure that policy makers have been focusing on recently
is readmissions. This is part of efforts to extend quality of care measures
from within-hospital processes to after-hospital short-term outcomes (Medi-
care USA, 2013). As mentioned, the likelihood of readmission to the hospi-
tal, within a relatively short time, is a natural indirect measure for quality
of care (similarly to first-call-resolution rates in call centers). Consequently,
readmission rates are accounted for when profiling hospitals’ quality and de-
termining reimbursements for their services. It is commonly acknowledged,
however, that one should consider readmissions judiciously as some of them
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could be due to factors outside the hospital control (e.g. patients’ own be-
havior, or care after discharge), or they may be an integral part of the treat-
ment regiment. For example, returns within a few months to chemotherapy
are typically planned and are unrelated to poor quality. But there are also
chemotherapy returns after 1–2 weeks, which arise from complications after
treatment. To properly incorporate readmissions in a queueing model (such
as in Yom-Tov and Mandelbaum (2011)) one should distinguish between
these two readmission types by, for example, modeling planned (unplanned)
readmissions as deterministic (stochastic) returns. Our hospital data sup-
ports the analysis of readmissions (Mandelbaum et al., 2013), which are
further discussed in Section 4.2.2 of EV. Note that readmissions should be
measured in their natural time-scale. For example, readmission to an ED
should be measured in a time scale of days-weeks, while readmissions to an
IW have a natural time-scale of weeks-months. We will return to time scales
shortly.

6.2. Multi-dimensional workload. Operational performance of a service-
system is determined by the gap, positive or negative, between its workload
and the capacity assigned to process it. Workload is associated with a re-
source and, as such, used to gauge the requirements from that resource: for
example, workload of nurses helps determine appropriate nurse staffing lev-
els. Workload has also been shown to affect staff satisfaction level (Aiken
et al., 2002) and patients’ quality of care (Batt and Terwiesch, 2012; Kc and
Terwiesch, 2009).

In Queueing models, workload is typically an average quantity that is de-
fined in steady-state: if λ is the arrival-rate of patients and S is the service
time required from the nurse by a patient, then R = λ×E[S] is the workload
of the nurse, which is commonly referred to as offered load. In time-varying
environments (Green, Kolesar and Whitt, 2007; Reich, 2011), notably hos-
pitals, the offered-load R(·) is defined through the time-varying Little’s law
(Bertsimas and Mourtzinou, 1997; Green, Kolesar and Whitt, 2007):

R(t) =

∫ t

0
λ(u)P{S > t− u}du, t ≥ 0,

in which λ(·) is the time-varying arrival rate (some mild assumptions are
required for the integral to make sense).

As workload is matched against capacity, it must be measured in opera-
tional units. However, the workload of a nurse is affected by various factors
beyond the mere time-content of nurse’s tasks. For example, 1-minute of a
standard chore does not compare with a 1-minute life-saving challenge. The

imsart-ssy ver. 2013/03/06 file: "Short_Patient flow main".tex date: December 29, 2013



PATIENT FLOW IN HOSPITALS 41

calculation of nurses’ workload must therefore accommodate operational,
emotional and cognitive factors, yet the outcome must be in standardized
units that are “translatable” into staffing levels (Plonski et al., 2013).

It follows from the above that a comprehensive definition of personnel
workload is inevitably complex. In the context of a medical ward, a natural
approximation to workload is relative occupancy, namely the number of hos-
pitalized patients in a ward, divided by the number of its beds. Assuming
a constant beds-to-nurse ratio (Jennings and de Véricourt, 2011), homoge-
neous patient mix and an even distribution of workload over a patient’s stay,
occupancy is then well correlated with the daily-routine workload. However,
as already discussed in Section 4.5.3, the level of medical attention that pa-
tients require typically declines during their stay. In addition, routine chores
are less work intensive than admissions and discharges of patients, and the
latter are naturally associated with patient turnover or flux, as opposed to
bed occupancy. A proxy for workload must, therefore, acknowledge both
occupancy and turnover, and possibly be also sensitive to the “age” (time
since admission) of hospitalized patients.

Hence, we argue that the standard approach (presented above) for work-
load might be too simplified for the hospital environment. Here one must
account for time-varying multi-dimensional aspects, which calls for research
that aims at understanding, quantifying and measuring workload in health-
care.

6.3. Capacity. Offered load characterizes operational demand for service
which, in turn, must be matched by supply of the appropriate capacity. Ca-
pacity of a hospital or a ward is commonly expressed in terms of the number
of beds (or rooms, or physical space). However, it is also necessary to asso-
ciate with a ward its processing capacity, which is determined by its human
and equipment resources: nurses, physicians, support personnel, and medical
apparatus. One thus distinguishes between static capacity (e.g. beds) and
dynamic (processing) capacity of a resource. This distinction has operational
and cost accounting implications in that static capacity is thought of as fixed
over the relevant horizon, hence its cost is fixed; processing capacity, on the
other hand, is considered variable in that it is flexible (controllable), both
level- and hence cost-wise.

The association of flexible capacity with variable costs plays an impor-
tant role in the Accounting/Strategic view of a hospital; Kaplan and Porter
(2011) argue that most hospital costs are mistakenly judged as fixed while
they ought to be viewed as variable costs, which means that the correspond-
ing resource levels are flexible. This is an important observation, as it renders
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controllable most resources in a hospital.
Our final point pertains to the characterization of capacity when it is

flexible. Consider, for example, determining the capacity of the Ophthalmol-
ogy ward in Rambam hospital, which happens to admit overflow patients
from Internal wards (analogously to cross-trained agents in a call center;
see Aksin, Karaesmen and Ormeci (2007)). Practically, this entails alloca-
tion of appropriate equipment, training of Ophthalmology ward personnel
to be able to cater to IW patients and developing protocols for overflow of
IW patients to Ophthalmology. Then the (dynamic) capacity of the Oph-
thalmology ward, if measured in patients-per-day say, would depend on its
patient mix. The latter depends on the routing protocol which, in turn, de-
termines the offered load. It follows that capacity and protocols better be
determined jointly (unless their decoupling can be justified, as in Armony,
Gurvich and Mandelbaum (2008)).

6.4. Time-scales. When analyzing ED-to-IWs flow (§4), the wards op-
erate naturally on a time-scale of days while the ED time scale is hours.
It follows that the wards serve as a random environment for the ED (Ra-
makrishnan, Sier and Taylor, 2005). Figure 9 (§3.2) reveals that the hourly
scale is also of interest for IWs. These empirical examples arise from a ser-
vice system that evolves in multiple time scales, which are all natural for
measuring and modeling its performance. The mathematical manifestation
of such scales is asymptotic analysis that highlights what matters at each
scale, while averaging out details that are deemed insignificant (e.g., Man-
delbaum, Momcilovic and Tseytlin (2012), Shi et al. (2012), Gurvich and
Perry (2012) and Zacharias and Armony (2013)).

The analysis—theoretical as well as empirical—of hospital units that op-
erate under multiple time-scales offers further significant research opportu-
nities. Hierarchical control of a hospital (e.g. strategic, tactical, and opera-
tional) is one such example, in which the strategic level generates constraints
for tactical decisions which, in turn, percolate down to the operational level
(e.g. Zeltyn et al. (2011)). To be specific, the number of beds in a ward is de-
termined strategically which, tactically and operationally, sets staffing levels
for nurses (Jennings and de Véricourt, 2011). This relates to our discussion
in §3.2, where time scales helped determine what constitutes a server—a
bed or a nurse.

6.5. Some concluding comments on data-based research—a great opportu-
nity but no less of a challenge. Healthcare operations research is appropri-
ately booming, and queueing applications to patient flow are trying to follow
suit. In this context, the goal of the present work has been two-fold: first,
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to encourage and strengthen, through data and its EDA, the natural link
between theory and applications; and second, facilitate data-based learning
for researchers who seek to reinforce this important link.

While theory has been the comfort zone of Operations Research (OR)
and Applied Probability (AP), the situation dramatically differs when (big)
data is brought into the picture. Specifically, the traditional still prevalent
model for data-based OR/AP research has been one where an individual
researcher, or a small group, obtains and analyzes data for the sake of an
isolated research project. Our experience is that such a model cannot ad-
dress today’s empirical needs. For example, hospital data is typically large,
complex, contaminated and incomplete, which calls for a professional in-
evitably time-consuming treatment. Next, using data in a single project, or
a few for that matter, is wasteful—on the other hand, data-reuse and shar-
ing, across student generations or research groups, requires infrastructure,
documentation, maintenance and coordination. Finally, healthcare data is
often confidential and proprietary, and that prevents reproducibility and
slows down progress. (We will return to this last point momentarily.)

Fundamental changes are therefore essential—both within our OR/AP
community as well as our potential healthcare partners: changes in educa-
tion, organization and funding priorities, which takes us beyond our scope
here. But we are optimistic. Indeed, comprehensive data-collection is becom-
ing increasingly feasible, systematic and cheaper, for example via Real-time
Location Systems (RTLS), which will ultimately integrate with Personal-
Health and Financial Records. This will enable partnerships with providers
of healthcare services, that are based on multidisciplinary (clinical, opera-
tional, financial, psychological) tracking of complete care-paths. Also, track-
ing resolution and scope will be at the level of the individual patient and
provider, covering the full cycle of care.

6.5.1. Towards a culture of reproducible research in empirical OR/AP.
Data-based OR/AP research must strive for reproducibility of research outcomes—
a fundamental principle in the traditional sciences. Reproducibility enables
scrutiny of analysis and recommendations. This yields credibility and trust,
which is an absolute prerequisite for influencing hospital practices.

Reproducible (Operations) Research is discussed in Nestler (2011), which
is also a source for additional references and links. There have been some sys-
tematic attempts to establish a reproducibility culture in research (Donoho
et al., 2009). It ought to start with funding agencies and journal policies: e.g.
the Editorial Statement of the Finance Department in Management Science
reads: “Authors of empirical and quantitative papers should provide or make
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available enough information and data so that the results are reproducible.”
It can advance with research such as Karr (2009), that aims at statistical
analysis of distributed (unsharable) databases (e.g. hospital data); it will
ideally culminate in a multitude of research labs, each providing free access
to its data and serving its own research community and beyond.

A model for such a lab is the Technion SEELab, where readers can access
RambamData. Little effort will be then required to reproduce our present
EDA and going beyond it. In fact, most of our figures were created by
SEEStat—a SEELab-developed user-friendly platform for online (real-time)
EDA—and readers can recreate this process by following Nadjhahrov et al.
(2013).
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internet academic website, 8 emergency departments (mainly their arrivals
data) and 4 years of data from the Rambam Hospital—this is the empirical
foundation for the present paper.

The EDA environment of SEELab is SEEStat—a software platform that
enables real-time statistical analysis of service data at seconds-to-months
time resolutions. SEEStat was used to create most of our figures. It imple-
ments many statistical algorithms: parametric distribution fitting and selec-
tion, fitting of distribution mixtures, survival analysis and more—with all
algorithms interacting seamlessly with all the databases. SEEStat also inter-
acts with SEEGraph, a pilot-environment for structure-mining, on-demand
creation, display and animation of data-based process maps (e.g. Figure 1).

Three SEELab data-bases are publicly accessible at the SEELab server
SEEServer: two from call centers and one from the Rambam hospital. For
example, data from a U.S. banking call center covers the operational history
of close to 220 million calls, over close to 3 years; 40 million of these calls were
served by (up to 1000) agents and the rest by a VRU (answering machine).
The Rambam data is described in §1.4.

SEEStat Online: The connection protocol to SEELab data, for any re-
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search or teaching purpose, is simply as follows: go to the SEELab webpage
http://ie.technion.ac.il/Labs/Serveng;
then proceed, either via the link SEEStat Online, or directly through
http://seeserver.iem.technion.ac.il/see-terminal, and complete the
registration procedure. Within a day or so, you will receive a confirma-
tion of your registration, plus a password that allows you access to SEE-
Stat, SEELab’s EDA environment, and via SEEStat to the above-mentioned
databases. Note that your confirmation email includes two attachments: a
trouble-shooting document and a self-taught tutorial that is based on call
center data and the Rambam hospital data. We propose that you print out
the tutorial, connect to SEEStat and then let the tutorial guide you, hands-
on, through SEEStat basics—this should take no more than 1.5 hours.

On data cleaning and maintenance. There were plenty of records that
were flawed due to archiving or simply system errors. These were identified
via their inconsistency with trustable data and hence corrected or removed.
But more challenging was the identification of records that had been included
in the data due to some regulations, rather than physical transactions. For
example, some unreasonable workload profiles led to the discovery of a high
fraction of “transfers” from the ED to a virtual ward, all occurring precisely
at 11:59pm; subsequent analysis managed to associate each of these transfers
with a physical transfer, from the ED to some actual ward on the following
day. The reason for the inclusion of such virtual transfers was financial,
having to do with regulations of insurance reimbursement. And this is just
one out of many examples.

Reproducing our EDA and beyond. Rambam data is publicly available,
either for downloading (RambamData consists of records per individual cus-
tomers) or through SEEStat. The download link includes data documenta-
tion. To facilitate reproducibility, the document Nadjhahrov et al. (2013)
provides a detailed description of the creation process of our EDA, which
includes all figures (except for Figure 12) in the present paper.
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